Có một loạt các bài toán thực tế liên quan đến cấp số cộng trong chương trình toán lớp 11. Đây là những bài toán thú vị và quan trọng giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải quyết vấn đề.
- Các dạng toán về vectơ và các phép toán vectơ trong tài liệu ôn thi
- Tuyển tập kiến thức Toán 9: Học hiệu quả, đạt 9+ môn Toán!
- Chinh phục Toán và Khoa học: Cuốn sách giúp bạn cải thiện hiệu suất học tập
- Đề thi tuyển sinh lớp 10 môn Toán TP Hải Phòng 2021-2022: Đáp án và giải thích chi tiết
- Công thức xác suất thống kê – Bí quyết thành công!
Cấp Số Cộng là gì?
Cấp số cộng là một dạng dãy số (hữu hạn hay vô hạn) trong đó mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi, gọi là công sai. Công thức tổng quát của một cấp số cộng có công sai $d$ và số hạng đầu $a_1$ là:
Bạn đang xem: Các Dạng Bài Toán Thực Tế Về Cấp Số Cộng Lớp 11 Có Lời Giải
$a_n = a_1 + (n – 1)d$
Các Dạng Bài Tập Về Cấp Số Cộng
Dạng 1: Tìm số hạng tổng quát của cấp số cộng
Cho một cấp số cộng với số hạng đầu $a_1$ và công sai $d$, tìm số hạng tổng quát của cấp số cộng.
Đây là dạng bài tập căn bản và rất quan trọng trong việc nắm vững kiến thức về cấp số cộng. Bằng cách sử dụng công thức $a_n = a_1 + (n – 1)d$, ta có thể tính ra số hạng tổng quát của cấp số cộng với dễ dàng.
Dạng 2: Tính tổng của một cấp số cộng
Cho một cấp số cộng với số hạng đầu $a_1$, công sai $d$ và số hạng cuối cùng $a_n$, tính tổng của cấp số cộng.
Chúng ta có công thức tổng quát: $S_n = frac{n}{2}(2a_1 + (n-1)d)$, trong đó $S_n$ là tổng của cấp số cộng.
Dạng 3: Tìm số hạng đầu, công sai hoặc số hạng tổng quát của cấp số cộng
Cho một cấp số cộng với số hạng đầu $a_1$, số hạng cuối cùng $a_n$ và số hạng thứ $k$ $a_k$, tìm số hạng đầu, công sai hoặc số hạng tổng quát của cấp số cộng.
Dựa vào thông tin đã cho và công thức tổng quát của cấp số cộng, ta có thể tìm ra số hạng đầu, công sai hoặc số hạng tổng quát của cấp số cộng.
Các Dạng Bài Toán Thực Tế Về Cấp Số Cộng
Có nhiều loại bài toán thực tế liên quan đến cấp số cộng. Dưới đây là một số dạng bài toán thực tế về cấp số cộng.
Bài tập 1: Chương trình bơi lội
Bác Hưng tham gia một chương trình bơi lội để duy trì sức khoẻ. Anh bắt đầu bằng cách bơi 10 phút vào ngày đầu tiên và sau đó mỗi ngày sau đó anh tăng thêm 2 phút.
Lời giải
a) Công thức truy hồi cho số phút $T_n$ mà bác Hưng bơi vào ngày thứ $n$ có thể được tính bằng công thức truy hồi: $T1 = 10, T{n+1} = T_n + 2, n geq 1$
b) Số phút 6 ngày đầu tiên là $10, 12, 14, 16, 18, 20$
c) Bảy số phút đầu tiên của cấp số cộng là $12, 14, 16, 18, 20, 22, 24$
d) Để tìm ngày mà bác Hưng bơi ít nhất 60 phút, ta giải phương trình: $12 + 2(n-1) = 60$, suy ra $n = 26$. Vậy ngày thứ 26 là ngày mà bác Hưng bơi ít nhất 60 phút.
e) Tổng thời gian bác Hưng bơi trong 30 ngày đầu tiên là 1170 phút.
Nguồn: https://izumi.edu.vn/
Danh mục: Tài liệu toán