Bí kíp đọc và hiểu công thức đạo hàm logarit, căn bậc 3 và lượng giác

Hàm số logarit và công thức tính đạo hàm log là những nội dung quan trọng trong chương trình Toán 12. Những kiến thức này thường xuất hiện trong các bài thi quan trọng. Vì vậy, bài viết này sẽ tổng hợp và minh hoạ những kiến thức cơ bản về hàm logarit, công thức tính đạo hàm log để giúp bạn nắm chắc những kiến thức này.

1. Tổng hợp các công thức đạo hàm

Quy tắc cơ bản của đạo hàm được trình bày trong bảng sau:

bảng đạo hàm

2. Bảng đạo hàm lượng giác

bảng công thức đạo hàm

3. Công thức đạo hàm logarit

Công thức đạo hàm logarit được trình bày như sau:

đạo hàm ln

4. Công thức đạo hàm số mũ

Công thức đạo hàm số mũ được minh hoạ như sau:

công thức đạo hàm logarit

5. Bảng đạo hàm và nguyên hàm

Bảng đạo hàm và nguyên hàm được trình bày như sau:

đạo hàm logarit

6. Các dạng bài toán về công thức đạo hàm

6.1 Tính đạo hàm bằng định nghĩa

Hàm số y = f(x) có đạo hàm tại điểm x = x nếu và chỉ nếu f'(x) = f'(x).

Ví dụ 1: Tính đạo hàm của hàm số f(x) = 2x + 1 tại x = 2.

6.2 Chứng minh các đẳng thức về đạo hàm

Ví dụ 1: Chứng minh rằng đối với hàm số y = e.sinx, ta có y” + 2y’ + 2y = 0.

6.3 Viết phương trình tiếp tuyến khi biết tiếp điểm

Phương trình tiếp tuyến của đường cong (C): y = f(x) tại tiếp điểm M(x; y) có dạng:

Ví dụ: Cho hàm số y = x + 3mx + (m + 1)x + 1 (1), m là tham số thực. Tìm các giá trị của m để tiếp tuyến của đồ thị của hàm số (1) tại điểm có hoành độ x = -1 đi qua điểm A(1; 2).

6.4 Viết phương trình tiếp khi biết hệ số góc

Viết phương trình tiếp tuyến Δ của đường cong (C): y = f(x), biết Δ có hệ số góc k cho trước.

Ví dụ: Cho hàm số y = x + 3x – 9x + 5 (C). Trong tất cả các tiếp tuyến của đồ thị (C), hãy tìm tiếp tuyến có hệ số góc nhỏ nhất.

6.5 Phương trình và bất phương trình có đạo hàm

Ở đây là nội dung về phương trình và bất phương trình có đạo hàm.

Kết luận

Như vậy, đã có tổng hợp những kiến thức quan trọng về hàm số logarit và công thức tính đạo hàm log. Hy vọng rằng bài viết này có thể giúp bạn nắm vững những kiến thức cơ bản và đạt điểm cao trong các kỳ thi sắp tới. Để có thêm nhiều kiến thức hấp dẫn khác, hãy theo dõi Izumi.Edu.VN ngay từ bây giờ. Chúc bạn thành công!

Bài Viết Nổi Bật

Học Viện Phong Thủy Việt Nam

Đối tác cần mua lại website, xin vui lòng liên hệ hotline

Liên hệ quảng cáo: 0988 718 484 - Email: [email protected]

Địa chỉ: Số 20, TT6, Văn Quán, Hà Đông, Hà Nội

Web liên kết: Phật Phong Thủy