Bạn đang học toán lớp 10 và đang tìm hiểu về các công thức tính diện tích tam giác? Trong bài viết này, chúng tôi sẽ giới thiệu cho bạn các công thức tính diện tích tam giác một cách đầy đủ và chi tiết nhất. Hãy cùng khám phá!
- Tính tỷ lệ gia tăng dân số tự nhiên – Bí mật được tiết lộ!
- Tính Thể Tích Khối Trụ Và Ví Dụ Minh Họa
- Học Toán cấp 2: Tìm hiểu về hình tròn và công thức tính chu vi, diện tích
- Cách tính thể tích hình lập phương và bài tập thực hành
- Đại lượng tỉ lệ nghịch và cách giải các bài toán về đại lượng tỉ lệ nghịch – Toán lớp 7
Các công thức
Cho tam giác có BC = a, AC = b, AB = c với:
Bạn đang xem: Công thức tính diện tích tam giác đầy đủ, chi tiết nhất
- ha, hb, hc là độ dài đường cao lần lượt tương ứng với các cạnh BC, CA, AB
- R là bán kính đường tròn ngoại tiếp tam giác
- r là bán kính đường tròn nội tiếp tam giác
- p = (a + b + c)/2 là nửa chu vi tam giác
- S là diện tích tam giác
Khi đó ta có các công thức tính diện tích tam giác ABC như sau:
S = 1/2 * ha * BC
S = 1/2 * hb * AC
S = 1/2 * hc * AB
S = R * p
S = r * p
S = √(p * (p - a) * (p - b) * (p - c))
Phương pháp giải: Dựa vào dữ kiện bài ra để sử dụng linh hoạt một trong các công thức ở trên.
Ví dụ minh họa
Bài 1
Cho tam giác ABC có AB = 3, AC = 6, BAC^=60°. Tính diện tích tam giác ABC.
Lời giải:
Diện tích tam giác ABC là:
S = 1/2 * AB * AC * sin(BAC)
= 1/2 * 3 * 6 * sin(60°)
= 9√3 (đvdt)
Bài 2
Tam giác ABC có AC = 4, BAC^=30°, ACB^=75°. Tính diện tích tam giác ABC.
Lời giải:
Theo định lý tổng 3 góc trong tam giác ABC, ta có:
(Sử dụng công thức tính diện tích tam giác qua 3 cạnh)
(AC^2 * sin(ACB^) * sin(BAC^)) / (2 * sin(CAB^))
Bài 3
Tam giác ABC có a = 21, b = 17, c = 10. Diện tích của tam giác ABC bằng:
Lời giải:
Nửa chu vi tam giác ABC là:
p = (a + b + c)/2 = (21 + 17 + 10)/2 = 24 (đvđd)
Theo công thức Hê-rông, ta có diện tích tam giác ABC là:
S = √(p * (p - a) * (p - b) * (p - c))
= √(24 * (24 - 21) * (24 - 17) * (24 - 10))
= 84 (đvdt)
Bài 4
Tam giác đều nội tiếp đường tròn bán kính R = 4 cm có diện tích bằng bao nhiêu?
Lời giải:
Giả sử tam giác thỏa mãn yêu cầu đề bài là tam giác ABC đều có cạnh a (cm, a > 0).
Theo đề bài ta có, đường tròn có bán kính R = 4 cm là đường tròn ngoại tiếp tam giác ABC, khi đó tâm O của đường tròn chính là giao của ba đường trung trực của tam giác.
Mà tam giác ABC đều nên O đồng thời là trực tâm của tam giác.
Gọi E là trung điểm của BC
Khi đó ta có: AE = 3/2 * AO (tính chất trọng tâm)
Mà AO = R = 4 cm
Do đó: AE = 6 cm
Tam giác ABC đều nên trung tuyến AE cũng là đường cao.
Theo định lý Py-tha-go trong tam giác vuông ABE ta có:
AB^2 = AE^2 + BE^2
Suy ra: a^2 = 6^2 + (a/2)^2 ⇒ a = 4√3 cm
Vậy diện tích tam giác đều ABC là:
S = 1/4 * √3 * a^2
= 1/4 * √3 * (4√3)^2
= 12√3 (cm2)
Đó là các công thức tính diện tích tam giác mà bạn cần biết. Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách tính diện tích tam giác. Để tìm hiểu thêm về các chủ đề học tập khác, hãy truy cập Izumi.Edu.VN.
Nguồn: https://izumi.edu.vn/
Danh mục: Công thức