Công thức tính diện tích tam giác đầy đủ, chi tiết nhất

Bạn đang học toán lớp 10 và đang tìm hiểu về các công thức tính diện tích tam giác? Trong bài viết này, chúng tôi sẽ giới thiệu cho bạn các công thức tính diện tích tam giác một cách đầy đủ và chi tiết nhất. Hãy cùng khám phá!

Các công thức

Cho tam giác có BC = a, AC = b, AB = c với:

  • ha, hb, hc là độ dài đường cao lần lượt tương ứng với các cạnh BC, CA, AB
  • R là bán kính đường tròn ngoại tiếp tam giác
  • r là bán kính đường tròn nội tiếp tam giác
  • p = (a + b + c)/2 là nửa chu vi tam giác
  • S là diện tích tam giác

Khi đó ta có các công thức tính diện tích tam giác ABC như sau:

  • S = 1/2 * ha * BC
  • S = 1/2 * hb * AC
  • S = 1/2 * hc * AB
  • S = R * p
  • S = r * p
  • S = √(p * (p - a) * (p - b) * (p - c))

Phương pháp giải: Dựa vào dữ kiện bài ra để sử dụng linh hoạt một trong các công thức ở trên.

Ví dụ minh họa

Bài 1

Cho tam giác ABC có AB = 3, AC = 6, BAC^=60°. Tính diện tích tam giác ABC.

Lời giải:
Diện tích tam giác ABC là:
S = 1/2 * AB * AC * sin(BAC)
= 1/2 * 3 * 6 * sin(60°)
= 9√3 (đvdt)

Bài 2

Tam giác ABC có AC = 4, BAC^=30°, ACB^=75°. Tính diện tích tam giác ABC.

Lời giải:
Theo định lý tổng 3 góc trong tam giác ABC, ta có:

(Sử dụng công thức tính diện tích tam giác qua 3 cạnh)
(AC^2 * sin(ACB^) * sin(BAC^)) / (2 * sin(CAB^))

Bài 3

Tam giác ABC có a = 21, b = 17, c = 10. Diện tích của tam giác ABC bằng:

Lời giải:
Nửa chu vi tam giác ABC là:
p = (a + b + c)/2 = (21 + 17 + 10)/2 = 24 (đvđd)

Theo công thức Hê-rông, ta có diện tích tam giác ABC là:
S = √(p * (p - a) * (p - b) * (p - c))
= √(24 * (24 - 21) * (24 - 17) * (24 - 10))
= 84 (đvdt)

Bài 4

Tam giác đều nội tiếp đường tròn bán kính R = 4 cm có diện tích bằng bao nhiêu?

Lời giải:
Giả sử tam giác thỏa mãn yêu cầu đề bài là tam giác ABC đều có cạnh a (cm, a > 0).

Theo đề bài ta có, đường tròn có bán kính R = 4 cm là đường tròn ngoại tiếp tam giác ABC, khi đó tâm O của đường tròn chính là giao của ba đường trung trực của tam giác.

Mà tam giác ABC đều nên O đồng thời là trực tâm của tam giác.

Gọi E là trung điểm của BC

Khi đó ta có: AE = 3/2 * AO (tính chất trọng tâm)

Mà AO = R = 4 cm

Do đó: AE = 6 cm

Tam giác ABC đều nên trung tuyến AE cũng là đường cao.

Theo định lý Py-tha-go trong tam giác vuông ABE ta có:
AB^2 = AE^2 + BE^2

Suy ra: a^2 = 6^2 + (a/2)^2 ⇒ a = 4√3 cm

Vậy diện tích tam giác đều ABC là:
S = 1/4 * √3 * a^2
= 1/4 * √3 * (4√3)^2
= 12√3 (cm2)

Đó là các công thức tính diện tích tam giác mà bạn cần biết. Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách tính diện tích tam giác. Để tìm hiểu thêm về các chủ đề học tập khác, hãy truy cập Izumi.Edu.VN.

Bài Viết Nổi Bật

Học Viện Phong Thủy Việt Nam

Đối tác cần mua lại website, xin vui lòng liên hệ hotline

Liên hệ quảng cáo: 0988 718 484 - Email: [email protected]

Địa chỉ: Số 20, TT6, Văn Quán, Hà Đông, Hà Nội

Web liên kết: Phật Phong Thủy